Recently in the Genomics and Cell Biology Category


A new tool that simultaneously compares 1.4 million genetic sequences can classify how species are related to each other at far larger scales than previously possible. Described today in Nature Biotechnology by researchers from the Centre for Genomic Regulation in Barcelona, the technology can reconstruct how life has evolved over hundreds of millions of years and makes important inroads for the ambition to understand the code of life for every living species on Earth.

The abiotic synthesis of ribonucleotides is thought to have been an essential step towards the emergence of the RNA world.

To study the swiftness of biology - the protein chemistry behind every life function - scientists need to see molecules changing and interacting in unimaginably rapid time increments - trillionths of a second or shorter.

Two pathways diverged in a chemical synthesis, and one molecule took them both. Chemists at the University of Tokyo have studied how molecular building blocks can either form a spherical cage or an ultrathin sheet that shows some of the basic properties of a "smart" material that can respond to its environment.

Biology encodes information in DNA and RNA, which are complex molecules finely tuned to their functions. But are they the only way to store hereditary molecular information?

Researchers supported in part by the NASA Astrobiology Program have used genome-resolved metagenotics and metatranscriptomics to better understand microbial communities in the subseafloor near hydrothermal vents.

Viruses are non-living creatures, consisting of genetic material encased in a protein coat. Once the virus infects a living organism, it can replicate itself and continue on.

Caltech scientists have discovered a new species of worm thriving in the extreme environment of Mono Lake. This new species, temporarily dubbed Auanema sp., has three different sexes, can survive 500 times the lethal human dose of arsenic, and carries its young inside its body like a kangaroo.

The widespread presence of ribonucleic acid (RNA) catalysts and cofactors in Earth's biosphere today suggests that RNA was the first biopolymer to support Darwinian evolution.

Imagine standing in a lumberyard and being asked to build a house -- without blueprints or instructions of any kind.