Recently in the TRAPPIST-1 Category


Not all stars are like the Sun, so not all planetary systems can be studied with the same expectations. New research from a University of Washington-led team of astronomers gives updated climate models for the seven planets around the star TRAPPIST-1.

The planetary system of TRAPPIST-1, discovered in 2016-2017, is a treasure-trove of information. Thanks to a combination of observational techniques, we have estimates of the radii and masses of the seven planets of this very exotic system.

The TRAPPIST-1 planetary system provides an unprecedented opportunity to study terrestrial exoplanet evolution with the James Webb Space Telescope (JWST) and ground-based observatories.

After publication of our initial mass-radius-composition models for the TRAPPIST-1 system in Unterborn et al. (2018), the planet masses were updated in Grimm et al. (2018).

TRAPPIST-1 is an ultra-cool red dwarf star that is slightly larger, but much more massive, than the planet Jupiter, located about 40 light-years from the sun in the constellation Aquarius.

The seven Earth-size planets of TRAPPIST-1 are all mostly made of rock, with some having the potential to hold more water than Earth, according to a new study published in the journal Astronomy and Astrophysics.

Two exoplanets in the TRAPPIST-1 system have been identified as most likely to be habitable, a paper by PSI Senior Scientist Amy Barr says.

Stratosphere circulation is important to interpret abundances of photo-chemically produced compounds like ozone that we aim to observe to assess habitability of exoplanets.

We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star.

We explore the occurrence and detectability of planet-planet occultations (PPOs) in exoplanet systems. These are events during which a planet occults the disk of another planet in the same system, imparting a small photometric signal as its thermal or reflected light is blocked.