Recently in the TRAPPIST-1 Category

Instabilities in compact planetary systems are generically driven by chaotic dynamics. This implies that an instability time measured through direct N-body integration is not exact, but rather represents a single draw from a distribution of equally valid chaotic trajectories.

As discoveries of terrestrial, Earth-sized exoplanets that lie within the habitable zone of their host stars continue to occur at increasing rates, efforts have began to shift from the detection of these worlds to the characterization of their atmospheres through transit spectroscopy.

Recently, transmission spectroscopy in the atmospheres of the TRAPPIST-1 planets revealed flat and featureless absorption spectra, which rule out cloud-free hydrogen-dominated atmospheres. Earth-sized planets orbiting TRAPPIST-1 likely have either a clear or a cloudy/hazy hydrogen-poor atmosphere.

Near-term studies of Venus-like atmospheres with JWST promise to advance our knowledge of terrestrial planet evolution.

The TRAPPIST-1 system, consisting of an ultra-cool host star having seven known Earth-size planets will be a prime target for atmospheric characterization with JWST.

Mass-radius relationships for water-rich terrestrial planets are usually calculated assuming most water is present in condensed (either liquid or solid) form.

Low mass stars might offer today the best opportunities to detect and characterise planetary systems, especially those harbouring close-in low mass temperate planets.

The study, led by Jacob Lustig-Yaeger, a UW doctoral student in astronomy, finds that the James Webb telescope, set to launch in 2021, might be able to learn key information about the atmospheres of the TRAPPIST-1 worlds even in its first year of operation, unless -- as an old song goes -- clouds get in the way.

We investigate the stability of idealized planetary systems consisting of five planets, each equal in mass to the Earth, orbiting a one solar mass star.

The TRAPPIST-1 system has 7 known terrestrial planets arranged compactly in a mean-motion resonant chain around an ultra-cool central star, some within the estimated habitable zone.