Recently in the TRAPPIST-1 Category

Transiting compact multi-planet systems provide many unique opportunities to characterize the planets, including studies of size distributions, mean densities, orbital dynamics, and atmospheric compositions.

Variations in the reflective properties of the bulk material that comprises the surface of land-dominated planets will affect the planetary energy balance by interacting differently with incident radiation from the host star.

We have collected transit times for the TRAPPIST-1 system with the Spitzer Space Telescope over four years.

Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of wt% of water, even though the host star's activity should drive rapid atmospheric escape.

The discovery of potentially habitable planets around the ultracool dwarf star Trappist-1 naturally poses the question: could Trappist-1 planets be home to life?

Our solar system has one habitable planet -- Earth. A new study shows other stars could have as many as seven Earth-like planets in the absence of a gas giant like Jupiter.

We combine analytical understanding of resonant dynamics in two-planet systems with machine learning techniques to train a model capable of robustly classifying stability in compact multi-planet systems over long timescales of 109 orbits.

Observational data suggest that a belt of planetesimals is expected close to the snow line in protoplanetary disks. Assuming there is such a belt in TRAPPIST-1 system, we examine possibilities of water delivery to the planets via planetesimals from the belt.

TRAPPIST-1 is a fantastic nearby (~39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of potentially habitable planets.

The nearby ultracool dwarf TRAPPIST-1 possesses several Earth-sized terrestrial planets, three of which have equilibrium temperatures that may support liquid surface water, making it a compelling target for exoplanet characterization. TRAPPIST-1 is an active star with frequent flaring, with implications for the habitability of its planets.