Recently in the Astrogeology Category


New research lends credence to an unorthodox retelling of the story of early Earth first proposed by a geophysicist at Scripps Institution of Oceanography at UC San Diego.

Spearheaded by earth scientists of the University of Cologne, an international team of geologists has found evidence that a large proportion of the elements that are important for the formation of oceans and life, such as water, carbon and nitrogen, were delivered to Earth very late in its history.

Flash Floods In The Mid-Archean

Scientists supported in part by the NASA Astrobiology Program have provided new details of how the Hooggeneoeg Formation in South Africa was formed. The Hooggeneoeg Formation is found in the Barberton Greenstone Belt, and holds some of the best-preserved examples of supracrustal rocks from the mid-Archean (3.5 to 3.2 billion years ago).

Every school child learns about the water cycle--evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process happening on geologic timescales that makes our planet ideal for sustaining life as we know it?

We carried out wind tunnel experiments on parabolic flights with 100 μm Mojave Mars simulant sand. The experiments result in shear stress thresholds and erosion rates for varying g-levels at 600 Pa pressure.

Oxygen fugacity is a measure of rock oxidation that influences planetary structure and evolution. Most rocky bodies in the Solar System formed at oxygen fugacities approximately five orders of magnitude higher than a hydrogen-rich gas of solar composition.

Volatile molecules are critical to habitability, yet difficult to observe directly at the optically thick midplanes of protoplanetary disks, where planets form.

The increasing number of newly detected exoplanets at short orbital periods raises questions about their formation and migration histories.

The Moon-forming giant impact extensively melts and partially vaporizes the silicate Earth and delivers a substantial mass of metal to Earth's core.

A day is the time for Earth to make one complete rotation on its axis, a year is the time for Earth to make one revolution around the Sun -- reminders that basic units of time and periods on Earth are intimately linked to our planet's motion in space relative to the Sun. In fact, we mostly live our lives to the rhythm of these astronomical cycles.