Archives

September 2019


A recent study supported in part by the NASA Exobiology Program provides further details about lipid biomarkers in stromatolites. The research focuses on microbial mat communities in ponds at Guerrero Negro, Baja California Sur, Mexico.

Researchers supported in part by the Exobiology Program have provided new information about the oxygenation history of the Earth's oceans during the mid-Proterozoic using uranium (U) isotope data.

Scientists supported in part by the NASA Astrobiology Program have developed a new method to analyze mixtures of glycine and glycine oligomers using ion-pair high-performance liquid chromatography (IP-HPLC).

The 15th Astrobiology Graduate Conference (AbGradCon) was held from July 22-26, 2019 at the University of Utah in Salt Lake City, Utah, with 75 participants presenting 31 talks and 44 posters.

In the past decade, observations from space and ground have found H2O to be the most abundant molecular species, after hydrogen, in the atmospheres of hot, gaseous, extrasolar planets. Being the main molecular carrier of oxygen, H2O is a tracer of the origin and the evolution mechanisms of planets.

In The Little Prince, the classic novella by Antoine de Saint-Exupéry, the titular prince lives on a house-sized asteroid so small that he can watch the sunset any time of day by moving his chair a few steps.

Ever since the discovery of the first exoplanet, astronomers have made steady progress towards finding and probing planets in the habitable zone of their host stars, where the conditions could be right for liquid water to form and life to sprawl.

We present modeled detection limits of the Gemini Planet Imager (GPI) and the Wide-Field Infrared Space Telescope (WFIRST) to an optical and infrared laser which could be used by an extraterrestrial civilization to signal their presence.

The discovery of planets orbiting stars other than the Sun has accelerated over the past decade, and this trend will continue as new space- and ground-based observatories employ next-generation instrumentation to search the skies for habitable worlds.

The first computational model of solid-phase chemistry in cometary nuclear ices is presented. An astrochemical kinetics model, MAGICKAL, is adapted to trace the chemical evolution in multiple layers of cometary ice, over a representative period of 5 Gyr.

When the asteroid that wiped out the dinosaurs slammed into the planet, the impact set wildfires, triggered tsunamis and blasted so much sulfur into the atmosphere that it blocked the sun, which caused the global cooling that ultimately doomed the dinos.

The Moon-forming giant impact extensively melts and partially vaporizes the silicate Earth and delivers a substantial mass of metal to Earth's core.

Liquid water oceans are at the center of our search for life on exoplanets because water is a strict requirement for life as we know it. However, oceans are dynamic habitats--and some oceans may be better hosts for life than others.

A day is the time for Earth to make one complete rotation on its axis, a year is the time for Earth to make one revolution around the Sun -- reminders that basic units of time and periods on Earth are intimately linked to our planet's motion in space relative to the Sun. In fact, we mostly live our lives to the rhythm of these astronomical cycles.

Atmospheric scintillation caused by optical turbulence in the Earth's atmosphere can be the dominant source of noise in ground-based photometric observations of bright targets, which is a particular concern for ground-based exoplanet transit photometry.

We present the design of a point-and-shoot non-imaging full-Stokes spectropolarimeter dedicated to detecting life on Earth from an orbiting platform like the ISS.

A team of scientists has discovered a new possible pathway toward forming carbon structures in space using a specialized chemical exploration technique at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab).

Astronomical calculations reveal the solar system's dynamical evolution, including its chaoticity, and represent the backbone of cyclostratigraphy and astrochronology.

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body.

We present the observational result of a glycine precursor, methylamine (CH3NH2), together with methanol (CH3OH) and methanimine (CH2NH) towards high-mass star-forming regions, NGC6334I, G10.47+0.03, G31.41+0.3, and W51~e1/e2 using ALMA.