Recently in the Astrochemistry Category

Search for Interstellar Monohydric Thiols

It has been pointed out by various astronomers that very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analogue of alcohols) as far as the spectroscopic properties and chemical abundances are concerned.

Recent observations indicate potentially carbon-rich exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied.

Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution.

One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed.

The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A) and uracil (U) measured in various meteorites.

The formation pathways of different types of organic molecules in protostellar envelopes and other regions of star formation are subjects of intense current interest.

The classical theory of grain nucleation suffers from both theoretical and predictive deficiencies. We strive to alleviate these deficiencies in our understanding of dust formation and growth by utilizing an atomistic model of nucleation.

The 2175 \AA\ UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by Polycyclic Aromatic Hydrocarbons (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments.

As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds.

Traces of 2-3 Myr old 60Fe were recently discovered in a manganese crust and in lunar samples. We have found that this signal is extended in time and is present in globally distributed deep-sea archives.