The Effect Of Core Formation On Surface Composition And Planetary Habitability

Schematic showing the scenarios we investigated. The redox conditions of core formation play a formative role in determining crustal thickness and composition.

The melt productivity of a differentiated planet's mantle is primarily controlled by its iron content, which is itself approximated by the planet's core mass fraction (CMF).

Here we show that estimates of an exo-planet's CMF allows robust predictions of the thickness, composition and mineralogy of the derivative crust. These predicted crustal compositions allow constraints to be placed on volatile cycling between surface and the deep planetary interior, with implications for the evolution of habitable planetary surfaces. Planets with large, terrestrial-like, CMFs (≥0.32) will exhibit thin crusts that are inefficient at transporting surface water and other volatiles into the underlying mantle.

By contrast, rocky planets with smaller CMFs (≤0.24) and higher, Mars-like, mantle iron contents will develop thick crusts capable of stabilizing hydrous minerals, which can effectively sequester volatiles into planetary interiors and act to remove surface water over timescales relevant to evolution. The extent of core formation has profound consequences for the subsequent planetary surface environment and may provide additional constraints in the hunt for habitable, Earth-like exo-planets.

Brendan Dyck, Jon Wade, Richard Palin

Comments: 18 pages, 5 figures, accepted for publication in ApJL
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Cite as: arXiv:2104.10612 [astro-ph.EP] (or arXiv:2104.10612v1 [astro-ph.EP] for this version)
Submission history
From: Brendan Dyck
[v1] Wed, 21 Apr 2021 16:12:31 UTC (800 KB)

Please follow Astrobiology on Twitter.

  • submit to reddit