General Circulation Model for Simulations of Diverse Planetary Atmospheres: Exoplanet GJ 1132b

(a) Vertical cross section of the air temperature anomaly (obtained by subtracting the zonal mean) along the equator in the O2+CO2 simulation. The substellar point is 270◦ . (b) Vertical profile of the zonal-mean zonal wind speed at the equator. The longitudinal tilting of the hotspot correlates well with the super-rotating jet.

Exploring diverse planetary atmospheres requires modeling tools that are both accurate and flexible.

Here, we develop a three-dimensional general circulation model (3D GCM) that for the first time uses a line-by-line approach to describe the radiative transfer. We validate our GCM by comparing with published results done by different 1D and 3D models.

To demonstrate the versatility of the model, we apply the GCM to the hot Earth-sized exoplanet GJ 1132b and study its climate and circulation assuming an atmosphere dominated by abiotic oxygen (O2). Our simulations show that a minor CO2 composition can change the circulation pattern substantially, intensifying the equatorial superrotation in particular. Computation of the phase-resolved spectroscopy indicates that the vertical profile of the superrotating jet could be inferred in future spectro-photometric observations by the phase shift of the hotspot in the CO2 principle absorption band centered at 667 cm−1.

We also show that atmospheric mass could potentially be constrained by the phase amplitude in the O2 vibrational fundamental band for planets with O2-rich atmospheres, although further experimental and/or theoretical O2-O2 collision-induced absorption data at high temperatures is needed to confirm this. More physical schemes such as moist dynamics will be implemented in the GCM in the future so that it can be used to tackle a wide variety of planetary climate problems.

A New Line-By-Line General Circulation Model for Simulations of Diverse Planetary Atmospheres: Initial Validation and Application to the Exoplanet GJ 1132b

Feng Ding, Robin D. Wordsworth
(Submitted on 12 May 2019)

Comments: accepted for publication in ApJ
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Cite as: arXiv:1905.04635 [astro-ph.EP] (or arXiv:1905.04635v1 [astro-ph.EP] for this version)
Submission history
From: Feng Ding
[v1] Sun, 12 May 2019 02:56:17 UTC (411 KB)

Please follow Astrobiology on Twitter.

  • submit to reddit