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The search for life represents a unique data challenge within modern science. Machine 
learning, as it is now and may be in the future, offers many new opportunities for 
addressing this challenge. Astrobiology should systematically investigate and evaluate 
those opportunities or risk diminished scientific returns. 

 
At its core the search for life is a search for life’s imprints in the world, reflected in the 
features in data; meaning the measurable properties, variables or attributes in data 
associated with those imprints. To try to determine whether life exists, or has existed, 
elsewhere in the universe, evidence of the nature of those features is accumulated 
through measurement and experimentation. But the necessary measurements or 
experiments needed to verify and characterize life vary according to circumstances. One 
extreme example would be if extant extraterrestrial organisms were acquired in sufficient 
abundance so that a definitive claim could be made for the presence of life that is directly 
and uniquely assignable to its native surroundings. At the other extreme is the 
accumulation of many correlated pieces of evidence - both contextual and direct – that 
individually do not fully confirm or reject biogenicity but together lead to a probabilistic 
estimate of the existence of life (e.g., [1-3]). Such evidence might require the mapping 
and monitoring an entire planetary object (or even an entire planetary system) across 
heterogeneous spatial conditions and varied temporal scales. 

 
In any given case, including these extremes, proof of discovery will be less significant 
without the construction of a plausible history and characterization of the lifestyle of any 
living systems. For example, the discovery of an abundant, high complexity organic 
molecular species in an environment (with complexity gauged by an approach such as 
assembly theory [4]) would be very strong evidence of biogenicity. But if there were no 
robust hypothesis for the origin of such molecules (e.g., if there was no match to any 
known biochemical function or byproduct, or if these molecules existed in surprising 
conditions), it would be hard to see this as full confirmation of biogenicity – although it 
would clearly prompt much further investigation.  

 
To date however the search for life has tended to prioritize the imprints of life that are 
thought to offer the greatest chance of successful feature measurement, but not 
necessarily to maximize certainty and informational leverage on the nature of any 
biogenicity. This has sometimes resulted in controversial or inconclusive outcomes. A 
classic example is the C14 Labeled-Release nutrient experiments onboard the Viking 1 
and 2 landers, where a test that in principle yields guaranteed measurements in many 
terrestrial circumstances (that, by definition, are extreme in terms of their fecundity), 
proved enormously challenging and contradictory under Mars surface chemical 
conditions and in the context of results from other concurrent experiments.  

 



A more modern example would be the proposed use of the presence of molecular oxygen 
in remotely sensed rocky planet atmospheres. In certain conditions the detection of 
molecular oxygen would seem to be an excellent signature of a possible biosphere and 
is accessible with foreseeable technological detection capabilities. But in other, abiotic, 
conditions it is a potential false positive, and the absence of oxygen does not eliminate 
the possibility of the existence of a robust anoxic biosphere, as was the case for the first 
2 billion years of life on the Earth [5]. Theoretical studies do yield additional candidates 
for atmospheric compounds that could be more informative and definitive as 
biosignatures [6], but these are increasingly challenging to measure. Consequently, a 
consensus has formed that the likeliest successful search for life will inevitably involve a 
multitude of independent measurements and an accumulation (or "ladder" [2]) of evidence 
that, in effect, blends low and high informational value in features.  

 
Precisely how to rank or weight informational value or best handle data from 
heterogeneous conditions remains a topic of considerable debate [2, 7]. For instance, 
while heterogeneity might be dealt with by examining statistical distributions of 
measurements, that approach could dilute underlying signals or fail to account for, or 
deconvolve, the inherent limitations of the instruments being used to make the 
measurements. Or, if similar measurements are made independently and capture data 
features relating to different facets of a single underlying, highly complex phenomenon, it 
is critical to understand how the features relate to each other.  
 
Beyond business as usual: machine-in-the-loop 
 
Machine learning presents an opportunity for astrobiology to seek new ways to address 
these challenges and is already seeing rapid growth in use, driven in part by a cascade 
of algorithmic breakthroughs following 2012’s revolution in deep learning [8]. Recent 
works have explored machine learning for biosignature detection and assessing 
environments in astrobiology [e.g., 9-12] and paleobiology [e.g.,13–16] as well as mineral 
discrimination in planetary science [e.g. 17].  
 
A defining characteristic of all machine learning approaches is a capacity to “self-program” 
to model features in data and find those that are most informative. In the simplest, almost 
trivial, cases this might involve modeling least-squares curve-fits. The most complex 
cases involve machine learning approaches that – in effect – build a model for mapping 
the features in data as multi-dimensional vectors projected into a so-called “latent space”; 
an embedding within a high-dimensional manifold that nonetheless has lower 
dimensionality than the feature space of the data used to train on. This is a type of data 
compression that attempts to capture all features in data in a way that preserves their 
most information-rich relationships, enabling tasks like classification or prediction. 
 
In principle that makes machine learning approaches capable of discovering far more 
complex (i.e., non-linear, high-dimensional) patterns in data, with greater sensitivity to 
informative correlations between variables that would evade classical techniques. In 
practice this also makes the preparation of data a much more critical process, since 
unexpected biases and unappreciated imprints of method (e.g., how measurements are 



binned, or variations in instrument sensitivity) can confuse machine learning discoveries. 
The complex, non-intuitive abstraction of data within machine learning models also 
presents a very significant barrier to interpreting how and why any machine learning 
approach arrives at its results or outputs. Furthermore, the continued rapid pace of 
evolution in machine learning approaches presents an additional challenge for scientific 
applications where consistent interpretability and reproducibility of results are paramount.  

 
Astrobiology can mitigate these issues and continue to overcome some of its data 
challenges by pursuing intensive work on state-of-the-art machine learning to evaluate 
opportunities and areas for scientific advancement. This could take the form of a 
systematic program to: (1) Rapidly develop and deploy a variety of astrobiology-
orientated machine learning applications and assess their efficacy, and (2) Assess 
the totality of astrobiological data to date and its future-facing suitability for 
machine learning use (e.g., bias, breadth, sensitivity, heterogeneity). Such steps 
would enable the field to narrow some of the options for machine learning development 
and proceed along the most optimal path. 

 
Machine learning is also very likely to play a larger future role in instrument and mission 
design and operation [18]. Especially in autonomous science, and support of science 
during human exploration. Research that explores opportunities in machine-learning-
enabled autonomous science for astrobiology (including hypothesis generating systems, 
data collection decision making, and real time system control) for astrobiology would help 
ensure that the field maintains relevant capabilities and is positioned to play key roles in 
mission concept design and eventual flight. That work could both leverage and inform the 
elements (1) and (2) above. 
 
Deep learning and the nature of astrobiological data: 
 
As described above, some machine learning approaches, such as various forms of deep 
learning, build a model during training that provides a mechanism for mapping new input 
data into a multi-dimensional latent space. For example, a convolutional autoencoder 
working with images will learn how to convert input to an efficient latent representation 
(within the model’s latent space) of the features in those images (in the form of a multi-
dimensional array).  
 
Part of that latent representation of an image will describe fundamental properties like 
edges, gradients, or curves. In deeper layers of the encoder more specialized features 
can be captured, such as the patterns of materials or subtle relationships between light 
and shadow under differing conditions. With sufficiently large datasets and large models 
(e.g., many layers in the encoder/decoder) a system like this can be used (with additional 
learning structures) to accurately classify images from many classes or perform tasks like 
image generation or denoising. In this type of machine learning the convolutional 
autoencoder model (that is learnt) is represented by a fixed structure of interconnected 
layers and the many parameters that describe different spatial filters and, often, activation 
functions that introduce non-linear responses. That model is the result of feedthrough of 
many training images and a process of internal adjustment. Once a model is stopped 



from further learning it then serves as a mechanism to take an input and create a latent 
representation of that data which can then be used for the tasks of classification or 
reconstruction.  

 
In other words, if successful, such a model will map an input to a new, multidimensional 
representation that contains all the essential features for analysis in the original input, but 
which itself is not an image in any traditional sense. This raises a few key questions: (a) 
if the scientific value of data lies in the results of its use with a trained machine 
learning model, then is it the compressed latent representation of that data that is 
relevant, not the raw data? And (b) can the needs of the machine learning model 
direct the needs for measurements, instruments, and experimental design (e.g., 
mission architecture)? 

 
Both questions have relevance across many scientific areas, but are amplified for 
astrobiology, where solar system exploration under strong constraints of communication 
bandwidth, instrument complexity, necessary data breadth, and the risks of false positive 
life detections are all factors of concern.  
 
It is therefore suggested that work be supported to examine the efficacy of the current 
paradigm of “raw” data utilization in astrobiology and whether existing protocols and data 
formats are optimal for machine learning applications. This would apply not only to 
planetary exploration imaging data, but also to in situ or remote compositional analyses 
and contextual information on physical conditions. Furthermore, should an instrument 
return unprocessed data (that is seldom truly unprocessed) if the ultimate use is by a 
predetermined machine learning model that only requires the latent representation of a 
dataset? And if the latent representation is all that matters for answering scientific 
questions, then could the instrument itself be designed differently and more optimally? 
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