Atmospheres & Climate

Formation of Planetary Atmospheres: Analytical Estimation Of Vapor Production via Planetary Impacts

By Keith Cowing
Status Report
astro-ph.EP
July 16, 2024
Filed under , , , ,
Formation of Planetary Atmospheres: Analytical Estimation Of Vapor Production via Planetary Impacts
Result of the iSALE simulation. The changes to pressure and the internal energy caused by an impact shock with vimp = 30 km/s are illustrated as a function of position at t = 0 (a), t = ts (b), and t = 4ts (c). Calculation time is scaled by the time ts , where ts = 2Rp/vimp. — astro-ph.EP

To investigate impact vaporization for planetary atmosphere formation, we have studied the thermodynamic state generated by the shock wave due to a high-velocity impact, called the shock field.

We have carried out iSALE simulations for high-velocity vertical impacts using ANEOS for an equation-of-state (EoS) model. To understand the shock fields obtained from simulations, we have investigated the contribution of the thermal and cold terms in the EoS model on the Hugoniot curves. Although the thermal and cold terms are important for the pressure, the internal energy is mainly determined by the thermal term.

We thus assume a simple EoS determined by the thermal term and then analytically derive the shock internal-energy field, which reproduces the results of simulations well. Using the analytical solution of internal energy and the Hugoniot curve, we have derived the shock pressure field analytically as well. The analytical solutions for internal energy and pressure are valid even for impact velocities as low as the sound speed. The solution is good for the vertical direction or within the angles of about 60 degrees.

We have applied the solution to impact vaporization for the formation of planetary atmospheres. This gives good estimation of reformation of the planetary atmospheres of Earth sized planet.

Ryushi Miyayama, Hiroshi Kobayashi

Comments: Accepted for publication in A&A
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Cite as: arXiv:2407.00349 [astro-ph.EP] (or arXiv:2407.00349v1 [astro-ph.EP] for this version)
Submission history
From: Ryushi Miyayama
[v1] Sat, 29 Jun 2024 07:41:30 UTC (518 KB)
https://arxiv.org/abs/2407.00349
Astrobiology

Explorers Club Fellow, ex-NASA Space Station Payload manager/space biologist, Away Teams, Journalist, Lapsed climber, Synaesthete, Na’Vi-Jedi-Freman-Buddhist-mix, ASL, Devon Island and Everest Base Camp veteran, (he/him) 🖖🏻