NASA Selects 11 Space Biology Research Projects to Inform Biological Research During Future Lunar Exploration Missions
NASA announces the award of eleven grants or cooperative agreements for exciting new Space Biology research that will advance NASA’s understanding of how exposure to lunar dust/regolith impact both plant and animal systems. As human exploration prepares to go beyond Earth Orbit, Space Biology is advancing its research priorities towards work that will enable organisms to Thrive In DEep Space (TIDES).
The ultimate goal of the TIDES initiative is to enable long-duration space missions and improve life on Earth through innovative research. Space Biology supported research will enable the study of the effects of environmental stressors in spaceflight on model organisms, that will both inform future fundamental research, as well as provide valuable information that will better enable human exploration of deep space.
Proposals for these eleven projects were submitted in response to ROSES-2022 Program Element E.9 “Space Biology Research Studies” (NNH22ZDA001N-SBR).
This funding opportunity solicited ground studies using plant or animal models (or their associated microbes) to characterize the responses of these organisms to lunar regolith simulant similar to that found at NASA candidate landing sites for future lunar exploration missions.
This funding opportunity represents a collaboration between the Space Biology Program and NASA’s Astromaterials Research and Exploration Science (ARES) Division within the Exploration Architecture, Integration, and Science (EAIS) Directorate at the NASA Johnson Space Center, who will be supplying the lunar regolith simulant required for these studies.
Selected studies include (but are not limited to) efforts to 1) test the ability of lunar regolith to act as a growth substrate for crop-producing plants including grains, tomatoes and potatoes, 2) understand how growth in lunar regolith influences plant and microbial interactions, and how in turn, these interactions affect plant development and health, 3) identify and test bioremediation methods/techniques to enhance the ability of regolith to act as a growth substrate, and 4) understand how lunar dust exposure impacts host/microbial interactions in human-analogous model systems under simulated microgravity conditions.
Eleven investigators will conduct these Space Biology investigations from ten institutions in nine states. Eight of these awards are to investigators new to the Space Biology Program. When fully implemented, approximately $2.3 million will be awarded in fiscal years 2024-2027.
This is the first selection announcement made by the NASA Space Biology Program after the release of the new Decadal Survey: Thriving in Space: Ensuring the Future of Biological and Physical Sciences Research: A Decadal Survey for 2023-2032¸ which will help inform Space Biology goals and priorities over the next ten years.
Additional details, including the awardees and organizations, can be found on the NSPIRES website linked above and at the link below:
Astrobiology