Thermal Desorption Of Astrophysical Relevant Ice Nixtures Of Acetaldehyde And Acetonitrile From Olivine Dust

By Keith Cowing
April 16, 2021
Filed under
Thermal Desorption Of Astrophysical Relevant Ice Nixtures Of Acetaldehyde And Acetonitrile From Olivine Dust

Millimeter and centimeter observations are discovering an increasing number of interstellar complex organic molecules (iCOMs) in a large variety of star forming sites, from the earliest stages of star formation to protoplanetary disks and in comets.

In this context it is pivotal to understand how the solid phase interactions between iCOMs and grain surfaces influence the thermal desorption process and, therefore, the presence of molecular species in the gas phase. In laboratory, it is possible to simulate the thermal desorption process deriving important parameters such as the desorption temperatures and energies. We report new laboratory results on temperature-programmed desorption (TPD) from olivine dust of astrophysical relevant ice mixtures of water, acetonitrile, and acetaldehyde.

We found that in the presence of grains, only a fraction of acetaldehyde and acetonitrile desorbs at about 100 K and 120 K respectively, while 40% of the molecules are retained by fluffy grains of the order of 100 {\mu}m up to temperatures of 190-210 K. In contrast with the typical assumption that all molecules are desorbed in regions with temperatures higher than 100 K, this result implies that about 40% of the molecules can survive on the grains enabling the delivery of volatiles towards regions with temperatures as high as 200 K and shifting inwards the position of the snowlines in protoplanetary disks. These studies offer a necessary support to interpret observational data and may help our understanding of iCOMs formation providing an estimate of the fraction of molecules released at various temperatures.

Maria Angela Corazzi, John Robert Brucato, Giovanni Poggiali, Linda Podio, Davide Fedele, Claudio Codella

Comments: Accepted for Publication on Astrophysical Journal
Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); Earth and Planetary Astrophysics (astro-ph.EP); Astrophysics of Galaxies (astro-ph.GA)
Cite as: arXiv:2104.07069 [astro-ph.IM] (or arXiv:2104.07069v1 [astro-ph.IM] for this version)
Submission history
From: Maria Angela Corazzi
[v1] Tue, 13 Apr 2021 11:07:17 UTC (15,950 KB)
Astrobiology, Astrochemistry,

Explorers Club Fellow, ex-NASA Space Station Payload manager/space biologist, Away Teams, Journalist, Lapsed climber, Synaesthete, Na’Vi-Jedi-Freman-Buddhist-mix, ASL, Devon Island and Everest Base Camp veteran, (he/him) 🖖🏻