Hot Oxygen And Carbon Escape From The Martian Atmosphere

By Keith Cowing
Press Release
November 4, 2019
Filed under
Hot Oxygen And Carbon Escape From The Martian Atmosphere
The Martian Atmosphere

The escape of hot O and C atoms from the present martian atmosphere during low and high solar activity conditions has been studied with a Monte-Carlo model.

The model includes the initial energy distribution of hot atoms, elastic, inelastic, and quenching collisions between the suprathermal atoms and the ambient cooler neutral atmosphere, and applies energy dependent total and differential cross sections for the determination of the collision probability and the scattering angles. The results yield a total loss rate of hot oxygen of 2.3−2.9×1025s−1 during low and high solar activity conditions and is mainly due to dissociative recombination of O+2 and CO+2.

The total loss rates of carbon are found to be 0.8 and 3.2×1024s−1 for low and high solar activity, respectively, with photodissociation of CO being the main source. Depending on solar activity, the obtained carbon loss rates are up to ∼40 times higher than the CO+2 ion loss rate inferred from Mars Express ASPERA-3 observations. Finally, collisional effects above the exobase reduce the escape rates by about 20−30% with respect to a collionless exophere.

Hannes Gröller, Herbert Lichtenegger, Helmut Lammer, Valery I. Shematovich
(Submitted on 4 Nov 2019)
Comments: 8 figures and 14 tables
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Journal reference: Planet. Space Sci., 98, 93-105 (2014)
DOI: 10.1016/j.pss.2014.01.007
Cite as: arXiv:1911.01107 [astro-ph.EP] (or arXiv:1911.01107v1 [astro-ph.EP] for this version)
Submission history
From: Hannes Gröller
[v1] Mon, 4 Nov 2019 10:13:57 UTC (1,425 KB)

Explorers Club Fellow, ex-NASA Space Station Payload manager/space biologist, Away Teams, Journalist, Lapsed climber, Synaesthete, Na’Vi-Jedi-Freman-Buddhist-mix, ASL, Devon Island and Everest Base Camp veteran, (he/him) 🖖🏻