Astrobiology (general)

Geochemical Constraints on Biological Evolution

By Keith Cowing
July 9, 2010

A NASA Astrobiology Institute-funded study led by Chris Dupont of the J. Craig Venter Institute indicates that environmental availability of trace elements over Earth’s history influenced the selection of elements used by life as biological evolution progressed. Their results show that environmental concentrations of trace metals influenced which types of metal-binding proteins evolved, and the relative timing of their evolution.

The study implies that the geochemistry of the Archean ocean (>2.5 billion years ago) influenced both the evolution of metal-binding protein architectures and the selection of elements by the ancestors of modern Archaea and Bacteria (simple single cell organisms). Specifically, low Zn, Mo, and Cu concentrations in the Archean ocean likely prevented the widespread emergence and diversification of Eukaryotic life (including plants, animals, and fungi) until the oceans became oxic, relatively late in Earth’s history. The study also revealed that although modern Archaea and Bacteria still predominantly use ancient metal-binding protein structures, most Eukaryotes use both early- and late- evolving structures. The paper appears in the May 24 Early Edition of PNAS.

Source: NAI Newsletter

Explorers Club Fellow, ex-NASA Space Station Payload manager/space biologist, Away Teams, Journalist, Lapsed climber, Synaesthete, Na’Vi-Jedi-Freman-Buddhist-mix, ASL, Devon Island and Everest Base Camp veteran, (he/him) 🖖🏻