TRAPPIST-1: April 2017

The recent discovery of seven potentially habitable Earth-size planets around the ultra-cool star TRAPPIST-1 has further fueled the hunt for extraterrestrial life. Current methods focus on closely monitoring the host star to look for biomarkers in the transmission signature of exoplanet's atmosphere. However, the outcome of these methods remain uncertain and difficult to disentangle with abiotic alternatives.

The newly detected TRAPPIST-1 system, with seven low-mass, roughly Earth-sized planets transiting a nearby ultra-cool dwarf, is one of the most important exoplanet discoveries to date.

TRAPPIST-1 is a late M-dwarf orbited by seven Earth-sized planets with orbital period ratios near a chain of mean motion resonances. Due to uncertain system parameters, most orbital configurations drawn from the inferred posterior distribution are unstable on short timescales, even when including the eccentricity damping effect of tides.

With several short-period, Earth-mass planets in the habitable zone, the TRAPPIST-1 system potentially allows litho-panspermia to take place on very short timescales. We investigate the efficiency and speed of inter-planetary material transfer resulting from impacts onto the habitable zone planets.