Habitable Zones & Global Climate: March 2021

The habitable zone is the region around a star where standing bodies of liquid water can be stable on a planetary surface.

Determining habitable zones in binary star systems can be a challenging task due to the combination of perturbed planetary orbits and varying stellar irradiation conditions.

The Earth's N2-dominated atmosphere is a very special feature. Firstly, N2 as main gas is unique on the terrestrial planets in the inner solar system and gives a hint for tectonic activity.

Context: The long-term carbonate-silicate cycle plays an important role in the evolution of Earth's climate and, therefore, may also be an important mechanism in the evolution of the climates of Earth-like exoplanets.

An atmosphere is what makes life on Earth's surface possible, regulating our climate and sheltering us from damaging cosmic rays. But although telescopes have counted a growing number of rocky planets, scientists had thought most of their atmospheres long lost.

We present the results of a study of the prospect of detecting habitable Trojan planets in the Kepler Habitable Zone circumbinary planetary systems (Kepler-16, -47, -453, -1647, -1661).

The weathering of silicate rocks plays an important role to keep the climate on Earth clement.

The Habitable zone Planet Finder (HPF) is a fiber fed precise radial velocity spectrograph at the 10 m Hobby Eberly Telescope (HET). Due to its fixed altitude design, the HET pupil changes appreciably across a track, leading to significant changes of the fiber far-field illumination.

In the search for small exoplanets orbiting cool stars whose spectral energy distributions peak in the near infrared, the strong absorption of radiation in this region due to water vapour in the atmosphere is a particularly adverse effect for the ground-based observations of cool stars.

The young (50-400 Myr) A3V star β Leo is a primary target to study the formation history and evolution of extrasolar planetary systems as one of the few stars with known hot (∼1600∘K), warm (∼600∘K), and cold (∼120∘K) dust belt components.

Earth's modern atmosphere is highly oxygenated and is a remotely detectable signal of its surface biosphere. However, the lifespan of oxygen-based biosignatures in Earth's atmosphere remains uncertain, particularly for the distant future.

Water (H2O), in all forms, is an important constituent in planetary bodies, controlling habitability and influencing geological activity.