Archives

Habitable Zones & Global Climate: October 2016


Computer simulations by astrophysicists at the University of Bern of the formation of planets orbiting in the habitable zone of low mass stars such as Proxima Centauri show that these planets are most likely to be roughly the size of the Earth and to contain large amounts of water.

The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars.

Water-rich planets such as Earth are expected to become eventually uninhabitable, because liquid water does not remain stable at the surface as surface temperatures increase with the solar luminosity over time.

For at least a billion years of the distant past, planet Earth should have been frozen over but wasn't. Scientists thought they knew why, but a new modeling study from the Alternative Earths team of the NASA Astrobiology Institute has fired the lead actor in that long-accepted scenario.

We report the first ground-based transit observation of K2-3d, a 1.5 R_Earth planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188-cm telescope and the multi(grz)-band imager MuSCAT.

Recent surveys have uncovered an exciting new population of ultra-short-period (USP) planets with orbital periods less than a day. These planets typically have radii <1.5 Earth radii, indicating that they likely have rocky compositions.