Archives

Extremeophiles and Extreme Environments: June 2009


The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt).

Fluorescent in situ hybridization (FISH) and 16S rDNA analysis were used to characterize the endolithic colonization of silica-rich rhyolitic glass (obsidian) in a barren terrestrial volcanic environment in Iceland. The rocks were inhabited by a diverse eubacterial assemblage. In the interior of the rock, we identified cyanobacterial and algal 16S (plastid) sequences and visualized phototrophs by FISH, which demonstrates that molecular methods can be used to characterize phototrophs at the limits of photosynthetically active radiation (PAR).