Archives

Extrasolar Planets: June 2020


The Milky Way Galaxy is literally teeming with exoplanets; thousands of planets have been discovered, with thousands more planet candidates identified. Terrestrial-like planets are quite common around other stars, and are expected to be detected in large numbers in the future.

Direct-imaging techniques of exoplanets have made significant progress recently, and will eventually enable to monitor photometric and spectroscopic signals of earth-like habitable planets in the future.

We report on the validation of two planets orbiting the nearby (36pc) M2 dwarf TOI-1266 observed by the TESS mission.

Stellar high-energy radiation (X-ray and extreme ultraviolet, XUV) drives atmospheric escape in close-in exoplanets.

Clouds are ubiquitous in exoplanet atmospheres and represent a challenge for the model interpretation of their spectra. Complex cloud models are too numerically costly for generating a large number of spectra, while more efficient models may be too strongly simplified.

To be considered Earth-like, a planet must be rocky, roughly Earth-sized and orbiting Sun-like (G-type) stars. It also has to orbit in the habitable zones of its star--the range of distances from a star in which a rocky planet could host liquid water, and potentially life, on its surface.

We have investigated the information content in reflected-starlight spectra of exoplanets. We specify our analysis to Barnard's Star b candidate super-Earth, for which we assume a radius 0.6 times that of Neptune, an atmosphere dominated by H2-He, and a CH4 volume mixing ratio of 5⋅10−3.

We present a transmission spectrum for the Neptune-size exoplanet HD 106315 c from optical to infrared wavelengths based on transit observations from the Hubble Space Telescope/Wide Field Camera 3, K2, and Spitzer.

The Sun-like star Kepler-160 (KOI-456) has been known to host two transiting planets, Kepler-160 b and c, of which planet c shows substantial transit-timing variations (TTVs).