Astrochemistry: November 2019

Over two hundred molecules have been discovered in space, some (like Buckminsterfullerene) very complex with carbon atoms. Besides being intrinsically interesting, these molecules radiate away heat, helping giant clouds of interstellar material cool and contract to form new stars.

The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB stars, as well as planetary nebulae.

The latest developments in astrochemistry have shown how some molecular species can be used as a tool to study the early stages of the solar-type star formation process. Among them, the more relevant species are the interstellar complex organic molecules (iCOMs) and the deuterated molecules.

An international team has found sugars essential to life in meteorites. The new discovery adds to the growing list of biologically important compounds that have been found in meteorites, supporting the hypothesis that chemical reactions in asteroids - the parent bodies of many meteorites - can make some of life's ingredients.

Using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru Telescope, astronomers have detected an unidentified infrared emission band from comet 21P/Giacobini-Zinner (hereafter, comet 21P/G-Z) in addition to the thermal emissions from silicate and carbon grains.

The isotopic ratio of nitrogen measured in primitive Solar System bodies shows a broad range of values, the origin of which remains unknown.

Scientists have long been puzzled by the existence of so-called "buckyballs" -- complex carbon molecules with a soccer-ball-like structure -- throughout interstellar space.

Origins of life chemistry has progressed from seeking out the production of specific molecules to seeking out conditions in which macromolecular precursors may interact with one another in ways that lead to biological organization.