Astrochemistry: September 2013

Chemical disequilibrium has recently become a relevant topic in the study of the atmospheres of of transiting extrasolar planets, brown dwarfs, and directly imaged exoplanets. We present a new way of assessing whether or not a Jovian-like atmosphere is in chemical disequilibrium from observations of detectable or inferred gases such as H$_2$O, CH$_4$, CO, and H$_2$.

The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared spectrometer (IRIS). These included propane (C3H8) and propyne (CH3C2H), while the intermediate-sized C3Hx hydrocarbon (C3H6) was curiously absent. Using spectra from the Composite Infrared Spectrometer (CIRS) on Cassini, we show the first positive detection of propene (C3H6) in Titan's stratosphere (5-sigma significance), finally filling the three-decade gap in the chemical sequence.

Scientists have discovered a 'cosmic factory' for producing the building blocks of life, amino acids, according to research.

New research has revealed that chemical reactions previously thought to be 'impossible' in space actually occur 'with vigour,' a discovery that could ultimately change our understanding of how alcohols are formed and destroyed in space - and which could also mean that places like Saturn's moon Titan, once considered too cold for life to form, may have a shortcut for biochemical reactions.

How many different molecules can be created when you release one of the universe's most reactive substances, hydrogen cyanide, in the lab? And will the process create some particularly interesting molecules?