Curious Mars


Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability

In this Letter, we make use of sophisticated 3D numerical simulations to assess the extent of atmospheric ion and photochemical losses from Mars over time.

We demonstrate that the atmospheric ion escape rates were significantly higher (by more than two orders of magnitude) in the past at 4 Ga compared to the present-day value owing to the stronger solar wind and higher ultraviolet fluxes from the young Sun. We found that the photochemical loss of atomic hot oxygen dominates over the total ion loss at the current epoch whilst the atmospheric ion loss is likely much more important at ancient times. We briefly discuss the ensuing implications of high atmospheric ion escape rates in the context of ancient Mars, and exoplanets with similar atmospheric compositions around young solar-type stars and M-dwarfs.

Chuanfei Dong, Yuni Lee, Yingjuan Ma, Manasvi Lingam, Stephen Bougher, Janet Luhmann, Shannon Curry, Gabor Toth, Andrew Nagy, Valeriy Tenishev, Xiaohua Fang, David
Mitchell, David Brain, Bruce Jakosky
(Submitted on 14 May 2018)

Comments: 6 pages, 4 figures, 1 table, accepted for publication in ApJ Letters
Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Solar and Stellar Astrophysics (astro-ph.SR); Space Physics (physics.space-ph)
Cite as: arXiv:1805.05016 [astro-ph.EP] (or arXiv:1805.05016v1 [astro-ph.EP] for this version)
Submission history
From: Chuanfei Dong [view email]
[v1] Mon, 14 May 2018 05:55:32 GMT (1458kb)
https://arxiv.org/abs/1805.05016
Astrobiology

Please follow Astrobiology on Twitter.


  • submit to reddit