Top-down Formation of Fullerenes in the Interstellar Medium

Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway.

It has been proposed that they can form by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C66H20 (i.e. circumovalene) can lead to the formation of C60 upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation, folding into a floppy closed cage and shrinking of the cage by loss of C2 units until it reaches the symmetric C60 molecule. At 10" from the illuminating star and with realistic molecular parameters, the model predicts that 100\% of C66H20 is converted into C60 in 105 years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process.

Hence, PAHs larger than C66H20 are unlikely to contribute significantly to the formation of C60, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C60 with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C60 are up to several 104 of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C60 can survive much longer than other fullerenes because of the remarkable stability of the \cs molecule at high internal energies.Hence, a natural consequence is that \cs is more abundant than other fullerenes in highly irradiated environments.

O. Berne, J. Montillaud, C. Joblin (Submitted on 12 Mar 2015)

Comments: Accepted for publication in A&A

Subjects: Astrophysics of Galaxies (astro-ph.GA)

Cite as: arXiv:1503.03698 [astro-ph.GA] (or arXiv:1503.03698v1 [astro-ph.GA] for this version)

Submission history From: Olivier Berne [v1] Thu, 12 Mar 2015 12:45:26 GMT (2648kb) http://arxiv.org/abs/1503.03698

Please follow Astrobiology on Twitter.


  • submit to reddit